首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   26篇
  国内免费   1篇
电工技术   5篇
综合类   1篇
化学工业   77篇
金属工艺   11篇
机械仪表   11篇
建筑科学   3篇
能源动力   10篇
轻工业   37篇
水利工程   5篇
石油天然气   3篇
无线电   75篇
一般工业技术   98篇
冶金工业   29篇
原子能技术   2篇
自动化技术   67篇
  2023年   8篇
  2022年   20篇
  2021年   29篇
  2020年   17篇
  2019年   27篇
  2018年   25篇
  2017年   24篇
  2016年   22篇
  2015年   16篇
  2014年   21篇
  2013年   34篇
  2012年   19篇
  2011年   33篇
  2010年   23篇
  2009年   10篇
  2008年   8篇
  2007年   11篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   5篇
  1996年   10篇
  1995年   5篇
  1994年   5篇
  1993年   9篇
  1992年   4篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有434条查询结果,搜索用时 31 毫秒
1.
NiO nanostructure was synthesized using a simple co-precipitation method and was embedded on reduced graphene oxide surface via ultrasonication. Structural investigations were made through X-ray diffraction (XRD) and functional groups were confirmed by Fourier transform infrared spectroscopy (FTIR). XRD analysis revealed the grain size reduction with doping. Fourier transform infrared spectroscopy confirmed the presence of metal-oxygen bond in pristine and doped NiO nanostructure as well as the presence of carbon containing groups. Scanning electron microscopy (SEM) indicated that the particle size decreased when NiO nanostructure was doped with copper. BET surface area was found to increase almost up to 43 m2/g for Cu doped NiO nanostructure/rGO composite. Current-voltage measurements were performed using two probe method. UV–Visible spectroscopic profiles showed the blue and red shift for Cu doped NiO nanostructure and Cu doped NiO Nanostructure/rGO composite respectively. Rate constant for Cu doped NiO nanostructure/rGO composite found to increase 4.4 times than pristine NiO nanostructure.  相似文献   
2.
Journal of Materials Science: Materials in Electronics - Multiwalled carbon nanotubes, due to high conductivity, stability, and large specific surface area, have a potential ability to promote...  相似文献   
3.
Vitamin A is an essential micronutrient whose deficiency is still a major health concern in many regions of the world. It plays an essential role in human growth and development, immunity, and vision, but may also help prevent several other chronic diseases. The total amount of vitamin A in the human diet often falls below the recommended dietary allowance of approximately 900–1000 μ $ \umu $ g/day for a healthy adult. Moreover, a significant proportion of vitamin A may be degraded during food processing, storage, and distribution, thereby reducing its bioactivity. Finally, the vitamin A in some foods has a relatively low bioavailability, which further reduces its efficacy. The World Health Organization has recommended fortification of foods and beverages as a safe and cost-effective means of addressing vitamin A deficiency. However, there are several factors that must be overcome before effective fortified foods can be developed, including the low solubility, chemical stability, and bioavailability of this oil-soluble vitamin. Consequently, strategies are required to evenly disperse the vitamin throughout food matrices, to inhibit its chemical degradation, to avoid any adverse interactions with any other food components, to ensure the food is palatable, and to increase its bioavailability. In this review article, we discuss the chemical, physical, and nutritional attributes of vitamin A, its main dietary sources, the factors contributing to its current deficiency, and various strategies to address these deficiencies, including diet diversification, biofortification, and food fortification.  相似文献   
4.
5.
In the present investigation, La1-xCoxCr1-yFeyO3 (x,y = 0.0, 0.12, 0.36, 0.60) perovskite was fabricated via a facile micro-emulsion route. The synthesized perovskites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques to examine the effect of Co and Fe ions on the physico-chemical properties. The ferroelectric, dielectric, and magnetic properties of La1-xCoxCr1-yFeyO3 were changed significantly as a function of dopants contents (Co and Fe ions). Outcomes revealed that the dielectric, ferroelectric and magnetic properties of LaCrO3 perovskite can be tuned significantly via Co and Fe doping and La0.40Co0.60Cr0.40Fe0.60O3 have potential for photocatalytic dye removal under (visible) light expoure. The photocatalytic activity (PCA) of the pristine LaCrO3 and La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst was evaluated under (visible) light irradiation for crystal violet (CV) dye. Experimental results revealed that La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst degrdae almost 77.21% CV dye with the rate constant value of 0.01475 min?1. In the presence of isopropyl alcohol (IPA) scavenger, the PCA of the La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst and rate constant value of the photocatalytic reaction decreased to 32.5% and 0.00491 min?1, suggesting the superoxide as main active specie. Results revealed that Co and Fe doping doped material is efficient for photocatalytic presentations under solar light expoure.  相似文献   
6.
7.
In this article, we report the effect of various carbon nanoparticle concentrations on the structural, curing, tan δ, viscosity variation during vulcanization, thermal, and mechanical characteristics of ethylene–propylene–diene monomer polymer sponge composites. The purpose of this study was to develop high‐strength, foamy‐structure polymer composites with an optimum filler to matrix ratio for advanced engineering applications. We observed that the structural, vulcanization, viscoelastic, and mechanical properties of the fabricated composites were efficiently influenced with the progressive addition of carbon content in the rubber matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39423.  相似文献   
8.
Biodegradable substrates and encapsulating materials play critical roles in the development of an emerging class of semiconductor technology, generally referred as “transient electronics”, whose key characteristic is an ability to dissolve completely, in a controlled manner, upon immersion in ground water or biofluids. The results presented here introduce the use of thin foils of Mo, Fe, W, or Zn as biodegradable substrates and silicate spin‐on‐glass (SOG) materials as insulating and encapsulating layers, with demonstrations of transient active (diode and transistor) and passive (capacitor and inductor) electronic components. Complete measurements of electrical characteristics demonstrate that the device performance can reach levels comparable to those possible with conventional, nontransient materials. Dissolution kinetics of the foils and cytotoxicity tests of the SOG yield information relevant to use in transient electronics for temporary biomedical implants, resorbable environmental monitors, and reduced waste consumer electronics.  相似文献   
9.

Wireless nanonetworks are not a simple extension of traditional communication networks at the nano-scale. Owing to being a completely new communication paradigm, existing research in this field is still at an embryonic stage. Furthermore, most of the existing studies focus on performance enhancement of nanonetworks via designing new channel models and routing protocols. However, the impacts of different types of nano-antennas on the network-level performances of the wireless nanonetworks remain still unexplored in the literature. Therefore, in this paper, we explore the impacts of different well-known types of antennas such as patch, dipole, and loop nano-antennas on the network-level performances of wireless nanonetworks. We also investigate the performances of nanonetworks for different types of traditional materials (e.g., copper) and for nanomaterials (e.g., carbon nanotubes and graphene). We perform rigorous simulation using our customized ns-2 simulation to evaluate the network-level performances of nanonetworks exploiting different types of nano-antennas using different materials. Our evaluation reveals a number of novel findings pertinent to finding an efficient nano-antenna from its several alternatives for enhancing network-level performances of nanonetworks. Our evaluation demonstrates that a dipole nano-antenna using copper material exhibits around 51% better throughput and about 33% better end-to-end delay compared to other alternatives for large-size nanonetworks. Furthermore, our results are expected to exhibit high impacts on the future design of wireless nanonetworks through facilitating the process of finding the suitable type of nano-antenna and suitable material for the nano-antennas.

  相似文献   
10.
In this investigation, the flow of an unsteady mixed convection boundary layer viscous nanofluid on a stretchable sheet is considered. The flow examination is affected by a magnetic field. The reason for the examination exhibited is to create models for nanomaterials that incorporate the Brownian movement and thermophoresis phenomena. The created nonlinear standard differential condition is illuminated numerically utilizing the Runge-Kutta-Gill technique and the start program. The different factors of speed, temperature, and concentration are reported and discussed. The examination shows that the speed, temperature, and concentration are lower in contrast with the consistent stream on account of an assisting flow, whereas the opposite situation is noticed in the opposing flow case. The effects of Brownian movement and thermophoresis in the concentration case are totally different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号